Subject : ENGLISH FOR MAINTENANCE LICENSES.
Number of Questions : 300

1. WHAT DOES THE AIR FLOW PRODUCE OVER ANY AERODYNAMIC SURFACE? (19030) REF.: AC 65-15A, PAGE 64.
 A. PRODUCES AN INCREASE IN VELOCITY AND TEMPERATURE.
 B. PRODUCES A REDUCTION IN VELOCITY AND TEMPERATURE.
 C. PRODUCES CERTAIN REDUCTION IN VELOCITY WITH CORRESPONDING INCREASES IN TEMPERATURE.
 D. PRODUCES CERTAIN INCREASES IN VELOCITY WITH CORRESPONDING REDUCTION IN TEMPERATURE.

2. HOW MANY GENERAL TYPES OF EXHAUST SYSTEMS IN USE ON RECIPROCATING AIRCRAFT ENGINES ARE THERE? (19299) REF.: AC 12A, PAGE 96.
 A. FOUR.
 B. TWO.
 C. ONLY ONE.
 D. THE TYPES OF EXHAUST SYSTEMS DEPEND OF ENGINE MANUFACTURER.
3.- IN MOST CASES, WHAT LOADS ARE DESIRABLE FOR STRUCTURAL MEMBERS TO CARRY ON? (18839) REF.: AC 65-15A, PAGE 25.
 A.- END LOADS RATHER THAN SIDE LOADS.
 B.- SIDE LOADS RATHER THAN END LOADS.
 C.- AERODYNAMIC LOADS RATHER THAN STRUCTURAL LOADS.
 D.- STRESS LOADS RATHER THAN STRENGTH LOADS.

 A.- OVER SPECIAL PYLON.
 B.- TO THE MIDDLE SECTION OF THE WINGS.
 C.- TO THE LOWER TRAILING EDGES OF THE WINGS.
 D.- TO THE UPPER TRAILING EDGES OF THE WINGS.

 A.- NYLON, ORLON AND DACRON.
 B.- NYLON, COTTON AND LINEN.
 C.- FABRIC, WARP AND PLY.
 D.- WOOF, WOVEN AND FILLING.

6.- WHAT IS PROVIDED AT MANY PITOT-STATIC TUBES IN ORDER TO PREVENT ICING DURING FLIGHT? (19273) REF.: AC 65-15A, PAGE 475.
 A.- CHEMICAL HEATING ELEMENTS.
 B.- AERODYNAMIC HEATING ELEMENTS.
 C.- HOT AIR HEATING ELEMENTS.
 D.- ELECTRICAL HEATING ELEMENTS.
 A.- FEW FACTORS.
 B.- ONE FACTOR.
 C.- MANY FACTORS.
 D.- SOME FACTORS.

 A.- TO SEE, WASH, AND DISPATCH THE AIRPLANE.
 B.- TO WORK, TEST AND CHECK THE AIRPLANES.
 C.- TO REPAIR, MAINTAIN AND CERTIFY AIRPLANES.
 D.- TO CONTROL, DISPATCH AND PARK THE AIRPLANES.

9.- WHAT OLD MATERIAL IS STILL IN USE TODAY TO COVER DIFFERENT AIRCRAFT PARTS? (18844) REF.: AC 65-15A, PAGE 85.
 A.- WOOD.
 B.- FABRIC.
 C.- PLASTIC.
 D.- COMPOSITE.

 A.- A TAIL WHEEL AND A NOSE SKID GEAR ARRANGEMENT.
 B.- A TAIL SKID ARRANGEMENT.
 C.- A TAIL WHEEL GEAR ARRANGEMENT.
 D.- A TRICYCLE GEAR ARRANGEMENT.

 A.- BIG AND SMALL OR LEFT AND RIGHT.
 B.- NATURAL OR ELECTRICAL.
 C.- NATURAL OR ARTIFICIAL.
 D.- NATURAL AND ARTIFICIAL.
A. IS DEFINED AS THE QUALITY OF AN OBJECT TO ATTRACT THE IRON METAL.
B. IS THE PROPERTY OF AN OBJECT TO ATTRACT ALL SUBSTANCES.
C. IS THE PROPERTY OF AN OBJECT TO ATTRACT ALL METALLIC SUBSTANCES.
D. IS THE PROPERTY OF AN OBJECT TO ATTRACT CERTAIN METALLIC SUBSTANCES.

A. AROUND THE INSULATING WASHERS.
B. OVER WASHERS AND BOLTS.
C. NEVER AROUND EDGES OF SKIN PANELS.
D. AROUND EDGES OF SKIN PANELS.

A. FUSELAGES MAY BE CONSTRUCTED WELDED, BOLTED TRUSS OR SOME FORM OF SEMI-MONOCOQUE CONSTRUCTION.
B. FUSELAGES MAY BE WELDED TRUSS OR SOME FORM OF MONOCOQUE CONSTRUCTION.
C. FUSELAGES MAY BE RIVETED, WELDED, GLUED OR SOME FORM OF MONOCOQUE CONSTRUCTION.
D. FUSELAGES ARE CONSTRUCTED ONLY LIKE SEMI-MONOCOQUE OR MONOCOQUE CONSTRUCTION.

15. WHAT IS LIFT FORCE IN A HELICOPTER? (18980) REF.: AC 65-15A, PAGE 50.
A. IS THE FORCE REQUIRED TO FLY THE HELICOPTER.
B. IS THE FORCE REQUIRED TO SUPPORT THE WEIGHT OF THE HELICOPTER.
C. IS THE FORCE REQUIRED TO SUPPORT THE TORQUE ROTORS.
D. IS THE FORCE REQUIRED TO LOAD AND UNLOAD THE HELICOPTER.
A.- A BRIGHT AND CLEAN COCKPIT.
B.- A CLEAN EXTERIOR SURFACE.
C.- ALL AIRPLANE IN GOOD CONDITION.
D.- A CLEAN HOUSE.

A.- VELOCITY AND STATIC PRESSURE WOULD INCREASE.
B.- THE VELOCITY AND STATIC PRESSURE WOULD DECREASE.
C.- VELOCITY WOULD DECREASE AND STATIC PRESSURE WOULD INCREASE.
D.- VELOCITY WOULD INCREASE AND STATIC PRESSURE WOULD DECREASE.

18.- WHAT IS BASICALLY INSTRUMENTATION? (18805) REF.: AC 65-15A, PAGE 469.
A.- THE SCIENCE OF MEASUREMENT.
B.- THE SCIENCE OF INDICATION.
C.- THE SCIENCE OF SHOWING DATA.
D.- INSTRUMENTS AND ADVERTISING.

19.- WHAT DO YOU HAVE TO USE TO INSPECT FOR CORROSION IN AN AIRPLANE AND BE SURE THAT NO AREA IS LEFT UNINSPECTED? (18777) REF.: FAA-H-8083-30, PAGE 6-8.
A.- INSTRUMENT.
B.- CHECKLISTS.
C.- TWO OR THREE METHODS.
D.- LEVEL TWO MECHANIC.
A. THEY ARE MOUNTED IN SEPARATE ENGINE NACELLES.
B. THEY ARE MOUNTED IN THE SAME NACELLE.
C. THEY ARE MOUNTED ONE BACK AND ONE FORWARD.
D. THEY ARE MOUNTED IN TANDEM.

A. NO MORE THAN 105°F.
B. NO LESS THAN 105°F.
C. 105°F EXACTLY.
D. SOLVENT CLEANERS DO NOT HAVE FLASHPOINT.

A. AILERONS, ELEVATORS AND RUDDERS.
B. FLAPS, TRIM TABS AND STABILIZERS.
C. SPEED BRAKES, LONGERONS AND ELEVATORS.
D. WING TIPS, GROUND SPOILERS AND RIBS.

A. THE BLADES FLAP AS A UNIT.
B. THE BLADES FLAP INDEPENDENTLY.
C. THE BLADES DO NOT FLAP.
D. THE BLADES FLAP ONLY OCCASIONALY.

24.- WHAT HAPPENS IN A HOVERING FLIGHT, IF LIFT AND THRUST ARE LESS THAN WEIGHT AND DRAG? (18987) REF.: AC 65-15A, PAGE 50.
A. THE HELICOPTER ENGINE IDLES.
B. THE HELICOPTER STAYS IN A HOVERING FLIGHT.
C. THE HELICOPTER DESCENDS VERTICALLY.
D. THE HELICOPTER ASCENDS VERTICALLY.
 A.- WIRE CONNECTORS, PULLEYS AND SHROUD MUST BE USED.
 B.- CABLE CONNECTORS AND PULLEYS ARE ALWAYS USED.
 C.- CABLE CONNECTORS ARE NEVER USED.
 D.- CABLE CONNECTORS ARE USED.

 A.- THE GLASS COVER MAY BE BROKEN.
 B.- THE TRANSMISSION MECHANISM IS DISCONNECTED.
 C.- THE MECHANISM IS, IN ALL PROBABILITY, DEFECTIVE.
 D.- THE ELECTRICAL POWER IS CUT OFF.

27.- WHAT MUST BE DONE IN ADDITION TO ROUTINE MAINTENANCE INSPECTIONS IN AMPHIBIANS OR SEAPLANES? (18778) REF.: FAA-H-8083-30, PAGE 6-8.
 A.- COULD BE CHECKED OCCASSIONALLY AND CRITICAL AREAS CLEANED OR TREATED EVERY DAY.
 B.- MAY BE CHECKED MONTHLY AND CRITICAL AREAS WIPED OR TREATED, AS NECESSARY.
 C.- SHOULD BE CHECKED DAILY AND CRITICAL AREAS CLEANED OR TREATED, AS NECESSARY.
 D.- SHOULD BE CHECKED WEEKLY AND CRITICAL AREAS PAINTED, CLEANED OR TREATED, AS NECESSARY.

 A.- THE NITROGEN ATOM.
 B.- THE COPPER ATOM.
 C.- THE HYDROGEN ATOM.
 D.- THE OXYGEN ATOM.
A.- ARE VERY EXPENSIVE AND DIFFICULT TO GET.
B.- ARE VERY CORROSIVE TO COMMON AIRCRAFT METALS.
C.- SMELL VERY BAD AND ARE CHEAP TO BUY.
D.- ARE VERY DANGEROUS TO COMPOSITES.

A.- ANNUALLY.
B.- IN ANY INSPECTION.
C.- WEEKLY.
D.- DAILY BASIS.

31.- HOW LONG HAVE HIGH TENSION IGNITION SYSTEMS BEEN IN USE? (19298) REF.: AC 65-12A, PAGE 186.
A.- FOR MORE THAN HALF A CENTURY.
B.- FOR MORE THAN A CENTURY.
C.- FOR MORE THAN SIXTY YEARS.
D.- FOR MANY TIMES.

A.- IN THE LIQUID IT WEIGHS LESS THAN IN THE FREE SPACE.
B.- IN THE LIQUID IT WEIGHS MORE THAN IN THE FREE SPACE.
C.- IN THE LIQUID IT WEIGHS EQUAL THAN IN THE FREE SPACE.
D.- IN THE LIQUID IT WEIGHS 10% LESS THAN IN THE FREE SPACE.

A.- SHOCK.
B.- LOADS.
C.- FORCE.
D.- STRESS.
 A.- IS A FORM OF ENERGY.
 B.- IS A FORM OF TEMPERATURE.
 C.- IS A FORM OF RADIATION.
 D.- IS A FORM OF WORK.

 A.- WILL CAUSE IT TO CONTRACT OR BECOME LARGER.
 B.- WILL CAUSE IT TO EXPAND OR BECOME LARGER.
 C.- WILL CAUSE IT TO EXPAND OR BECOME SHORTER.
 D.- WILL CAUSE IT TO INCREASE THE WEIGHT OR BECOME HEAVIER.

 A.- MACHINE SEWING.
 B.- DOUBLE STITCH SEWING.
 C.- AUTOMATIC SEWING.
 D.- HAND SEWING.

37.- WHAT IS THE RIVETS GRIP LENGTH? (18761) REF.: FAA-H-8083-30, PAGE 5-64.
 A.- THE TOTAL SHEET THICKNESS PLUS THE RIVET LENGTH.
 B.- THE NOMINAL RIVET LENGTH.
 C.- THE SHANK DIAMETER.
 D.- THE MAXIMUM TOTAL SHEET THICKNESS TO BE RIVETED.

38.- WHAT ARE THE METHODS TO COVER FUSELAGES? (18851) REF.: AC 65-15A, PAGE 95.
 A.- THE SLEEVE OR BLANKET METHOD.
 B.- THE FABRICS SLEEVE OR PLASTIC BLANKET METHOD.
 C.- THE PARTIAL OR TOTAL COVERING METHOD.
 D.- THERE ARE NO METHODS TO COVER FUSELAGES.
A.- ON ENGINE SPEED.
B.- ON ENGINE HORSEPOWER.
C.- ON ALTITUDE OF FLIGHT.
D.- ON FLIGHT DISTANCE.

A.- THE PROPER CLEANNESS AND CORRECT O-RING.
B.- THE PROPER FLUID LEVEL AND AIR PRESSURE.
C.- THE PROPER TIRE PRESSURE AND FLUID LEVEL.
D.- THE PROPER WHEEL, BRAKES AND FLUID.

41.- WHAT FORCES ACT ON AN AIRCRAFT, WHETHER IT IS ON THE GROUND OR IN FLIGHT? (19042) REF.: AC 65-15A, PAGE 131.
A.- THE FORCES ARE CUTING, PUSHING OR BENDING.
B.- THE FORCES ARE PULLING, PUSHING OR TWISTING.
C.- THE FORCES ARE WEIGHT, THRUST OR DRAG.
D.- THE FORCES ARE LIFTING, PUSHING OR DOWNWARD.

42.- HOW MUST THE MIXTURE BE IN ORDER FOR AN ENGINE TO DEVELOP MAXIMUM POWER AT FULL THROTTLE? (19115) REF.: AC 65-12A, PAGE 121.
A.- THE FUEL MIXTURE MAY BE RICHER THAN FOR CRUISE.
B.- THE FUEL MIXTURE IS THE SAME ALL THROUGH THE FLIGHT.
C.- THE FUEL MIXTURE MUST BE RICHER THAN FOR CRUISE.
D.- THE FUEL MIXTURE MUST BE LEANER THAN FOR CRUISE.

A.- INSTALLATION LOCATION, PROTECTION OF THE MATERIAL BEING RIVETED, DIAMETERS OF THE MATERIAL BEING RIVETED AND STRESS DESIRED.

B.- INSTALLATION PLACE, COMPOSITION OF THE TOOLS BEING USED, THINNESS OF THE MATERIAL BEING RIVETED AND STRENGTH DESIRE.

D.- INSTALLATION LOCATION, COMPOSITION OF THE MATERIAL BEING RIVETED, THICKNESS OF THE MATERIAL BEING RIVETED AND STRENGTH DESIRED.

A.- IT HAS NO SPECIAL ADVANTAGES.

B.- VERY EASY TO READ.

C.- READILY VISIBLE AND ACCESSIBLE.

D.- DEPENDS ON THE AIRCRAFT TYPE.

45.- WHAT IS NEEDED IN ORDER TO PRODUCE EXTENSIVE PITTING DAMAGE IN DISSIMILAR METAL PARTS? (18773) REF.: FAA-H-8083-30, PAGE 6-4.

A.- THE PRESENCE OF SALT.

B.- THE PRESENCE OF A CONDUCTOR.

C.- THE ABSENCE OF ZINC CHROMATE PRIMER.

D.- BIG CHANGE IN TEMPERATURES.

A.- MAY NEED TO BE REWORKED.

B.- MAY NEED TO BE REJECTED.

C.- MAY TEND TO OXIDIZE.

D.- MAY BE CUT.
A.- THE BEST INK.
B.- SOME MEANS OF IDENTIFICATION.
C.- SOME MEANS OF ISSUE.
D.- A POOR PAPER.

A.- MANY FREE ELECTRONS.
B.- VERY LOW WEIGHT.
C.- BE VERY SOFT.
D.- BE VERY EXPENSIVE.

A.- A HIGH TEMPERATURE.
B.- A CERTAIN AMOUNT OF ELECTRICITY.
C.- A CERTAIN AMOUNT OF HEAT.
D.- A CERTAIN AMOUNT OF ENERGY.

A.- LIFT, THRUST, WEIGHT AND DRAG.
B.- CUT, TORSION, FORWARD AND AFT.
C.- BENDING, COMPRESSION, SHEAR AND TORSION.
D.- BACK, FORWARD, UP AND DOWN.

A.- THE HANGARS, TOOLS, TECHNICAL ORDERS AND LADDERS.
B.- THE HANGARS AND LADDERS.
C.- THE TOOLS AND TECHNICAL ORDERS.
D.- THE DRAWINGS AND PRINTS.
 A. THE EXCESSIVE WATER.
 B. THE EXCESSIVE HEAT.
 C. THE EXCESSIVE SUN.
 D. THE EXCESSIVE WIND.

 A. THE DIFFERENTIAL TORQUE BETWEEN TWO ROTORS.
 B. THE WIND DURING HOVERING OR VERTICAL FLIGHT.
 C. THE HORIZONTAL FLIGHT OR THE DIFFERENTIAL TILT.
 D. THE HORIZONTAL FLIGHT OR WIND DURING HOVERING.

54.- WHAT IS AN IMPORTANT CONSIDERATION WHEN CHOOSING MATERIAL TO USE IN AIRPLANE PARTS? (18728) REF.: FAA-H-8083-30, PAGE 5-1.
 A. THE DENSITY OF MATERIALS.
 B. THE VOLUME OF MATERIALS.
 C. THE HARDNESS.
 D. THE STRENGTH.

 A. BOTH ENDS BY THE INSIDE AND THE OUTSIDE TUBING.
 B. THE OUTSIDE.
 C. THE INSIDE.
 D. THE INSIDE AND THE OUTSIDE.

 A. FROM SMALL DENTS TO HOLES.
 B. FROM NEGLIGIBLE TO BIG DAMAGES.
 C. INTO FOUR SPECIFIC GROUPS.
 D. INTO FOUR GENERAL GROUPS.
A.- SHOULD BE REPAIRED WITH GOOD PARTS.
B.- SHOULD BE REPAIRED WITH BRIGHT PARTS.
C.- SHOULD BE REPAIRED WITH NEW PARTS.
D.- SHOULD BE REPAIRED WITH OVERHAULED PARTS.

A.- IT TRIES TO CRUSH AN OBJECT.
B.- IT TRIES TO TWIST AN OBJECT.
C.- IT TRIES TO SLICE OR TO CUT AN OBJECT.
D.- IT TRIES TO STRESS AN OBJECT.

A.- IN THE SKIN, EYES AND LUNGS.
B.- IN THE HAND, FEET AND HAIR.
C.- IN THE CHEST, ARMS AND FACE.
D.- IN THE ELBOW, FINGERS AND NOSE.

A.- PRODUCE A COOLING EFFECT.
B.- PRODUCE A REFRIGERATING EFFECT.
C.- PRODUCE AN INSULATION EFFECT.
D.- PRODUCE A WEIGHT INCREASE.

61.- WHY IS ZINC CHROMATE PRIMER APPLIED TO METALLIC SURFACES? (18847) REF.: AC 65-15A, PAGE 115.
A.- BECAUSE THE COVERING IS CORROSION RESISTANT.
B.- BECAUSE THE COVERING HAS A NICE COLOR.
C.- BECAUSE IT PROTECTS IT FROM THE SUN.
D.- BECAUSE THE COVERING IS ENAMEL OR LACQUER.
A.- NICKEL STEELS OR ALUMINUM METALS.
B.- CHROME-VANADIUM OR CHROMIUM-IRON METALS.
C.- ALUMINUM OR COPPER METALS.
D.- CHROME-NICKEL OR STAINLESS STEELS METALS.

A.- THEY MUST BE USED WITH GREAT CARE.
B.- THEY MUST BE USED IN OPEN PLACES.
C.- THEY MUST NOT BE USED WITH SUN LIGHT.
D.- THEY MUST BE USED WITH MASK AND SPECIAL WORK CLOTH.

A.- ELECTROLYTIC OR DISSIMILAR METALS CORROSION.
B.- INTERGRANULAR OR DISSIMILAR METALS CORROSION.
C.- CHEMICAL OR DISSIMILAR METALS CORROSION.
D.- SPOT WELDING OR SIMILAR METALS CORROSION.

65.- WHAT DO YOU HAVE TO CHECK BEFORE USING THE GRINDER? (19128) REF.: AC 65-15A, PAGE 141.
A.- THE BENCH GRINDER.
B.- THE ABRASIVE GRAIN.
C.- THE WHEEL FOR CRACKS.
D.- THE ELECTRICAL POWER.

A.- POTENTIAL ENERGY.
B.- KINETIC ENERGY.
C.- WORK ENERGY.
D.- STATIC ENERGY.
A.- THE CONDITION.
B.- THE SERIAL NUMBER.
C.- THE POINTS FOR SHARPNESS.
D.- THE LENGTH.

A.- INSPECT THE LINE AND FITTING CAREFULLY.
B.- INSPECT THE LINE CAREFULLY.
C.- INSPECT THE LINE, TOOLS AND FITTING CAREFULLY.
D.- INSPECT THE LINE, FITTING, MAINTENANCE MANUAL AND TOOLS CAREFULLY.

A.- VISUAL INSPECTION FOR DAMAGE.
B.- VISUAL INSPECTION FOR CALIBRATION.
C.- VISUAL INSPECTION FOR CLEANNESS.
D.- CHECK THE INSTRUMENT READING.

70.- WHEN A HELICOPTER IS BEING WEIGHED, WHAT LOCATION MUST BE KNOWN? (18645) REF.: FAA-H-8083-30, PAGE 4-27.
A.- THE LONGITUDINAL WEIGHING POINT.
B.- THE LONGITUDINAL AND LATERAL WEIGHING POINTS.
C.- THE LATERAL WEIGHING POINT.
D.- THE LONGITUDINAL, VERTICAL AND LATERAL WEIGHING POINTS.
A.- THE USE OF BEST CLEANING.
B.- A GOOD PAINT FINISH.
C.- A FIELD TREATMENT.
D.- THE WET WASH.

A.- CLOSE TO ELECTRIC LINES.
B.- IN PRESURIZATION AREAS.
C.- AT ANY LOCATIONS.
D.- WHERE THE CLAMP CAN RESTRICT OR PREVENT HOSE FLEXURE.

73.- WHAT HAPPENS DURING AN AUTOROTATION IN A HELICOPTER? (18990) REF.: AC 65-15A, PAGE 54.
A.- THE ENGINE DOES NOT SUPPLY POWER.
B.- THE ENGINE IS IN MAINTENANCE.
C.- THE HELICOPTER IS IN A HOVERING POSITION.
D.- THE CONING IS DOWNWARD.

A.- CROME VANADIUM STEEL AND HIGH-SPEED CARBON ALLOY STEEL.
B.- CROME STEEL ALLOY AND HIGH-SPEED ALLOY STEEL.
C.- CARBON STEEL AND HIGH-SPEED ALLOY IRON.
D.- CARBON STEEL AND HIGH-SPEED ALLOY STEEL.
A.- TWO.
B.- THREE.
C.- FOUR.
D.- FIVE.

76.- WHAT FLAME HAS TO BE USED FOR WELDING CHROME MOLYBDENUM? (19130) REF.: AC 65-15A, PAGE 259.
A.- A SOFT NEUTRAL FLAME.
B.- A STRONG NEUTRAL FLAME.
C.- A BIG STRONG FLAME.
D.- A MEDIUM SOFT NEUTRAL FLAME.

A.- USE IT LIKE PLIERS OR PUNCHES.
B.- USE IT LIKE CHISELS OR PUNCHES.
C.- USE IT LIKE A FORK OR KNIFE.
D.- USE IT LIKE A STONE OR HAMMER.

78.- WHAT HAPPENS TO AIR AS ALTITUDE INCREASES? (19111) REF.: AC 65-12A, PAGE 120.
A.- THE AIR BECOMES DENSER.
B.- THE AIR BECOMES LESS DENSE.
C.- THE OXYGEN PROPORTION CHANGES.
D.- THE AIR BECOMES HEAVIER.
A.- AN AIRFOIL IS AN AIRPLANE DESIGNED TO OBTAIN A DESIRABLE REACTION FROM THE AIR THROUGH WHICH IT MOVES.
B.- AN AIRFOIL IS A SURFACE DESIGNED TO OBTAIN A DESIRABLE REACTION FROM THE AIR THROUGH WHICH IT MOVES.
C.- AN AIRFOIL IS A SURFACE DESIGNED TO OBTAIN A DESIRABLE REACTION FROM THE AIR WHEN IT IS ON THE GROUND.
D.- AN AIRFOIL IS A PLANE CONSTRUCTED TO OBTAIN A DESIRABLE REACTION FROM THE AIR THROUGH WHICH IT MOVES.

A.- BULKHEADS, COVERS, DOORS, RIVETS AND BOLTS WITH NUTS.
B.- SUPPORTS, FRAMES, FUEL PUMP AND PIPES.
C.- ALUMINUM, ALLOYS, GASKETS AND BEAM
D.- BULKHEADS, FORMERS, FRAMES, STRINGERS AND BEAMS.

A.- UNIFORM IN WIDTH.
B.- THE BASE METAL IS OVERHEATING.
C.- THE EDGE OF THE BEAD IS NOT IN A STRAIGHT LINE.
D.- THE PENETRATION SHOWS GAS POCKETS.

82.- WHEN AN AIRCRAFT IS IN A STATE OF EQUILIBRIUM? (19289) REF.: AC 65-15A, PAGE 37.
A.- WHEN THE SUM OF ALL THE FORCES ACTING ON AN AIRCRAFT AND ALL THE WEIGHT IS EQUAL TO ZERO.
B.- WHEN THE SUM OF ALL ITEMS ON AN AIRCRAFT AND ALL THE MOMENTS IS EQUAL TO ZERO.
C.- WHEN THE AIRCRAFT IS IN STABILITY.
D.- WHEN THE SUM OF ALL THE FORCES ACTING ON AN AIRCRAFT AND ALL THE MOMENTS IS EQUAL TO ZERO.
A.- ANY DEVICE THAT TRANSFORMS ENERGY.
B.- ALL DEVICES THAT USE FUEL.
C.- ANY DEVICE WITH WHICH WORK MAY BE ACCOMPLISHED.
D.- ANY ELEMENT WITH WHICH WORK MAY BE ACCOMPLISHED.

84.- WHAT DO YOU HAVE TO USE WHILE YOU ARE DRILLING? (19126)
REF.: AC 65-15A, PAGE 139.
A.- SAFETY GOGGLES.
B.- SAFETY GLASSES.
C.- WORK WEAR.
D.- CLEAN TOOLS.

85.- WHAT DOES THIS ADVISORY CIRCULAR RECOMEND FOR WORKING DURING AN ENGINE OVERHAUL? (19310) REF.: AC 65-12A, PAGE 412.
A.- ALWAYS USE THE PROPER TOOL FOR THE JOB AND THE ONE THAT FITS.
B.- USE THE PROPER TOOL FOR THE JOB AND KEEP IT CLEAN.
C.- SOME TIME USE THE PROPER TOOL FOR THE JOB AND THE ONE THAT IS NEW.
D.- DRAIN THE ENGINE OIL SUMPS AND CHANGE THE OIL FILTERS.

86.- WHAT OCCURS IF A LIGHTNING STRIKES AN AIRCRAFT? (18820)
A.- THE ELECTRICAL CURRENT MUST BE ELIMINATED.
B.- THE ELECTRICAL CURRENT MUST BE CONDUCTED THROUGH THE DISCHARGER.
C.- THE ELECTRICAL CURRENT MUST BE CONDUCTED THROUGH THE ELECTRICAL SYSTEMS.
D.- THE ELECTRICAL CURRENT MUST BE CONDUCTED THROUGH THE STRUCTURE.
87.- WHY DO YOU HAVE TO INSPECT THE SURROUNDING AREA DURING A STRUCTURAL DAMAGE? (19124) REF.: AC 65-15A, PAGE 127.

A.- FOR LOST OF PAINT.
B.- FOR RIVETS DAMAGE.
C.- FOR EVIDENCE OF CORROSION.
D.- FOR EVIDENCE OF BIGGEST DAMAGE.

A.- TWO.
B.- FIVE.
C.- FOUR.
D.- THREE.

89.- WHAT DO ALL HEAT ENGINES HAVE IN COMMON? (19101) REF.: AC 65-12A, PAGE 1.

A.- THE ABILITY TO CONVERT HEAT ENERGY INTO MECHANICAL ENERGY.
B.- THE ABILITY TO CONVERT MECHANICAL ENERGY INTO HEAT ENERGY.
C.- THE ABILITY TO USE FUEL AND TO DELIVER POWER.
D.- THE ABILITY TO SUPPORT AIRPLANES.

A.- DEPEND THE PRESSURE THAT WILL SUPPORTED.
B.- COULD BE RE-CHEQUED.
C.- MUST BE PROOF-TESTED.
D.- MAY BE INSPECTED.
A.- DEPEND ON THE CURRENT FLOW DIRECTION.
B.- NEUTRAL CHARGE.
C.- NEGATIVE CHARGE.
D.- POSITIVE CHARGE.

A.- SUPERSONIC FLOW.
B.- WAVE FORMATIONS.
C.- WAVE COMPRESSION.
D.- FLOW DIRECTION.

93.- WHAT DO WE HAVE TO DO WHEN WE FIND DEEP PIT IN THE TEETH OF A GEAR? (19311) REF.: AC 65-12A, PAGE 413.
A.- SEND IT TO MANUFACTURER.
B.- REJECT IT.
C.- REWORK IT.
D.- CHANGE THE TEETH.

A.- A 100 HOURS AND ANNUAL INSPECTIONS.
B.- A ROUTINE AND DETAILED INSPECTIONS.
C.- PROGRESSIVE ANNUAL INSPECTIONS.
D.- A DIFFERENT LEVEL OF INSPECTIONS.

95.- WHAT IS THE PRINCIPAL FLUID USED FOR PROPULSION IN EVERY TYPE OF POWERPLANT EXCEPT THE ROCKET? (19103) REF.: AC 65-12A, PAGE 1.
A.- NAPHTA.
B.- PETROLEUM.
C.- AIR.
D.- FUEL.
A.- ALUMINUM AND NON-ALUMINUM NUTS.
B.- METAL AND NON-METAL NUTS.
C.- NON-SELF-LOCKING AND SELF LOCKING NUTS.
D.- BIG AND SMALL NUTS.

A.- THE WIRE.
B.- THE ENVELOPE.
C.- THE METAL.
D.- THE LINE.

A.- IN ANY ALLOYS.
B.- IN ALUMINUM ALLOYS.
C.- IN TITANIUM ALLOYS.
D.- IN MAGNESIUM ALLOYS.

A.- THE PART MUST BE STORED.
B.- THE PART MUST BE RINSED.
C.- THE PART MUST BE DEMAGNETIZED.
D.- THE PART MUST BE CLEANED.

A.- THE CHORD OF THE WING.
B.- THE LENGHT OF THE WING FROM LEADING EDGE TO TRAILING EDGE.
C.- THE LENGHT OF THE WING FROM WINGTIP TO WINGTIP.
D.- THE LENGHT OF THE WING FROM WINGTIP TO WINGROOT.
A.- THE ROTATIONAL SPEED OF THE GEAR DECREASES.
B.- THE ROTATIONAL SPEED OF THE GEAR INCREASES.
C.- THE ROTATIONAL SPEED OF THE GEAR IS THE SAME.
D.- DEPENDS ON THE SPEED IN THE MAIN GEAR.

102.- WHEN CLEANING AN ENGINE, WHAT DO YOU HAVE TO DO WITH THE ENGINE COWLING? (18795) REF.: FAA-H-8083-30, PAGE 6-23.
A.- CLOSE, OPEN OR REMOVE IT AS MUCH AS POSSIBLE.
B.- OPEN IT AS MUCH AS POSSIBLE.
C.- REMOVE IT COMPLETELY.
D.- OPEN OR REMOVE IT AS MUCH AS POSSIBLE.

A.- WHEN THE AIRPLANE IS IN CRUISE FLIGHT AT A CONSTANT VELOCITY.
B.- WHEN THE AIRPLANE IS IN STRAIGHT-AND-LEVEL FLIGHT AT A CONSTANT VELOCITY.
C.- WHEN THE AIRPLANE IS AT CONSTANT POWER AND CONSTANT VELOCITY.
D.- ALWAYS.

A.- IS THE ACT OR PROCESS OF CHANGING PLACE OR POSITION.
B.- IS THE MOTION AROUND ANOTHER OBJECT.
C.- IS WHEN THE AIR FLOW Passes THROUGH AN OBJECT.
D.- IS THE MOVEMENT OF THE AIR AROUND AND OBJECT OR THE OBJECT MOVING THROUGH THE AIR.
105.- WHAT IS ESSENTIAL TO A GOOD HEAT TREATMENT? (18736) REF.: FAA-H-8083-30, PAGE 5-16.
A. ACCURATE TEMPERATURE MEASUREMENT.
B. ACCURATE HEAT TREATMENT.
C. ACCURATE TEMPERATURE CONTROL.
D. A BIG HEAT-TREATING FURNACE.

A. MAGNESIUM.
B. ALUMINUM.
C. IRON.
D. COPPER.

A. A LIFT FORCE.
B. A CUT FORCE.
C. A BENDING FORCE.
D. A TORSION FORCE.

A. IS A MEASURE OF THE PULL OF GRAVITY ACTING ON THE MASS OF AN OBJECT.
B. IS A MEASURE OF THE FORCE ACTING ON THE MASS OF AN OBJECT.
C. IS A MEASURE OF THE DISTANCE BETWEEN TWO OR MORE OBJECTS.
D. IS THE EARTH EFFECT OVER ALL OBJECTS THAT HAVE A MASS.
A.- THE AIRPLANE MUST TURN ABOUT ONE AXIS ONLY.
B.- THE AXES CHANGE POSITION.
C.- THE AIRPLANE MUST TURN ABOUT ONE OR MORE OF THREE AXES.
D.- THE CENTER OF GRAVITY (C.G.) CHANGES POSITION.

A.- IS VERY DIFFERENT.
B.- IS VERY SIMILAR.
C.- IS ALMOST IDENTICAL.
D.- IS IDENTICAL.

A.- THE FORCE TRIES TO PULL AN OBJECT APART.
B.- THE FORCE TRIES TO TWIST AN OBJECT.
C.- THE FORCE TRIES TO COMPRESS OR CRUSH AN OBJECT.
D.- THE FORCE TRIES TO CUT OR SLICE THROUGH.

A.- IMPREGNATED, POWDERED AND ACID.
B.- COARSE, MEDIUM AND FINE.
C.- NEUTRAL, SOFT AND HARD.
D.- TYPE I, TYPE II AND TYPE III.

A.- FUELING.
B.- REGULATION REQUIREMENT.
C.- AIRCRAFT WEIGHING.
D.- DAILY INSPECTION.
A. MAY SOMETIMES CAUSE THAT THE PAINT DOES NOT HOLD ON THE METAL SURFACE.
B. MAY SOMETIMES CAUSE CHANGES IN THE SURFACE OF A METAL.
C. MAY SOMETIMES CAUSE THE SURFACE OF A METAL TO EXFOLIATE.
D. MAY SOMETIMES CAUSE THE SURFACE OF A METAL TO STRESS.

A. THE AIRCRAFT MAINTAINS LEVEL FLIGHT.
B. THE AIRCRAFT CAN TAKEOFF.
C. THE AIRCRAFT LOSES LEVEL FLIGHT.
D. THE AIRCRAFT INCREASES THE ALTITUDE.

A. WHEN ALL SIGNALS ARE EQUAL IN MAGNITUDE.
B. WHEN THE TWO SIGNALS ARE EQUAL IN MAGNITUDE.
C. WHEN THE TWO SIGNALS ARE EQUAL IN INTENSITY.
D. WHEN THE SIGNALS ARE IN ZERO.

A. DEPEND HOW TALL IS THE MECHANIC.
B. HOLD IT FIRMLY WITH GLOVES AND PROTECTIVE GLASSES.
C. HOLD IT FIRMLY IN ONE HAND.
D. HOLD IT FIRMLY WITH BOTH HANDS.
118.- WHEN USING RIVETS OR EVEN BOLTS, CARE MUST BE TAKEN TO ENSURE THE HOLE IS NOT (18764) REF.: FAA-H-8083-30, PAGE 5-74.
A.- REDUCED.
B.- INCORRECTLY DRILLED.
C.- ELONGATED OR SLANTED.
D.- EXACTLY.

119.- WHAT IS ALSO A SIGNIFICANT FACTOR IN DETERMINING IF THE AIRCRAFT IS SAFE TO OPERATE? (18712) REF.: FAA-H-8083, PAGE 4-1.
A.- THE AIRCRAFT BALANCE.
B.- THE FUEL LOADED IN THE AIRCRAFT.
C.- THE OIL USED IN THE ENGINES.
D.- THE WEATHER CONDITIONS.

120.- WHAT WAX SHOULD BE USED FOR LACING CORD PROTECTION? (18849) REF.: AC 65-15A, PAGE 93.
A.- ARTIFICIAL WAX.
B.- NATURAL WAX.
C.- BEESWAX.
D.- LACING WAX.

A.- THE SPILLED BATTERY ACID IS A LESS OF A PROBLEM.
B.- THE BATTERY DRAINAGE IS LESS OF A PROBLEM.
C.- THE BATTERY MAINTENANCE IS A LESS OF A PROBLEM.
D.- THE BATTERY COST IS A LESS OF A PROBLEM.
122.- WHAT MUST BE KNOWN WHEN AN AIRCRAFT IS BEING WEIGHTED? (18638) REF.: FAA-H-8083-30, PAGE 4-16.
A.- THE TARE AND EMPTY WEIGHT MUST BE KNOWN.
B.- THE LEVELING POINTS MUST BE KNOWN.
C.- THE ARMS MUST BE KNOWN.
D.- THE SCALE MUST BE KNOWN.

A.- A BULKHEAD FITTING SHOULD BE USED.
B.- A BULKHEAD FITTING MAY BE USED.
C.- TWO OR THREE SOFT OR MEDIUM HARD CLAMPS.
D.- RUBBER-CUSHIONED CLAMPS SHOULD BE USED.

A.- VARIOUS MECHANICAL LINKAGES.
B.- MANY MECHANICAL LINKAGES CABLE.
C.- SOME MECHANICAL AND ELECTRICAL LINKAGES.
D.- VARIOUS PUSH-PULL RODS.

A.- IN HARD COPPER, ANY ALUMINUM, AND STEEL ALLOYS TUBING.
B.- IN SOFT COPPER, ALCLAD OR ALUMINUM, AND BURRS TUBING.
C.- IN SOFT COPPER, ALUMINUM, AND BRASS TUBING.
D.- IN CORROSION RESISTANT STEEL, TITANIUM, AND BRASS TUBING.
A.- IN ALL TYPES OF CERAMIC MATERIALS.
B.- IN ALL TYPES OF METAL MATERIALS.
C.- IN ALL TYPES OF MATERIALS.
D.- IN ALL TYPES OF COMPOSITES MATERIALS.

A.- THEY ARE SMALL FIXED SURFACES AND ARE INSTALLED TO THE WING TRAILING EDGE.
B.- THEY ARE SOME MOVABLE CONTROLS AND ARE ATTACHED TO THE FLAPS.
C.- THEY ARE SMALL MOVABLE SURFACES AND ARE ATTACHED TO THE TRAILING EDGE OF FLIGHT CONTROLS.
D.- THEY ARE BIG MOVABLE SURFACES AND ARE ATTACHED TO THE LEADING EDGE OF FLIGHT CONTROLS.

A.- BECAUSE THE COMPOUND IS VERY CORROSIVE AND DANGEROUS.
B.- BECAUSE ANY FLUID WILL DISSOLVE THE COMPOUND.
C.- BECAUSE THE COMPOUND WILL DESTROY THE METAL-TO-METAL CONTACT.
D.- BECAUSE THE COMPOUND WILL FORM A GUM WITH THE LIQUID.

A.- BENDING AND CUT.
B.- TENSION AND COMPRESSION.
C.- TENSION AND TORSION.
D.- SHEAR AND CUT.
130.- TORQUE IS A VERY INTERESTING CONCEPT AND OCCURRENCE, AND IT IS DEFINITELY SOMETHING THAT NEEDS TO BE DISCUSSED IN CONJUNCTION WITH? (18660) REF.: FAA-H-8083-30, PAGE 3-7.

A.- TOOLS AND MECHANICS.
B.- WORK AND POWER.
C.- METALS AND COMPOSITES.
D.- STRESS AND STRENGTH.

A.- TO INCREASE LOAD CAPABILITY AND DECREASE VOID PLACE.
B.- TO INCREASE WIND RESISTANCE DURING LANDING.
C.- TO REDUCE NOISE AND TURBULENCE DURING ALL FLIGHT.
D.- TO REDUCE WIND RESISTANCE DURING FLIGHT.

132.- HOW MANY SYSTEMS HAS EACH CARBURATOR TO PROVIDE FOR ENGINE OPERATION UNDER VARIOUS LOADS AND AT DIFFERENT ENGINE SPEEDS? (19105) REF.: AC 65-12A, PAGE 115.

A.- EACH CARBURATOR HAS SIX SYSTEMS.
B.- EACH CARBURATOR HAS MANY SYSTEMS.
C.- EACH CARBURATOR HAS NINE SYSTEMS.
D.- THE CARBURATOR DOES NOT HAVE OTHER SYSTEMS.

A.- UNTIL THE NUTS ARE READY TO GIVE TORQUE.
B.- THE NUTS MUST BE INSTALLED WITH A SPECIAL WRENCH.
C.- UNTIL AN INCREASE IN RESISTANCE TO TURNING IS ENCOUNTERED.
D.- UNTIL THE NUT IS INSTALLED ON THE BOLT.
134.- WHAT PROVIDES THE NECESSARY TO HOLD THE AIRPLANE IN LEVEL UNACCELERATED FLIGHT? (19104) REF.: AC 65-12A, PAGE 1.
A.- THE FLIGHT CONTROLS.
B.- THE DRAG.
C.- THE LIFT.
D.- THE ENGINE OR ENGINES.

A.- AIDS IN INCREASING THE ENGINE POWER.
B.- AID IN SUPPORTING THE HELICOPTER WHILE HOVERING.
C.- THE AID IS THEORETICAL ONLY.
D.- THE GROUND EFFECT PRODUCES ADVERSE EFFECTS.

A.- HORIZONTAL ROTATING WING AND VERTICAL ROTATING WING.
B.- OVER CABIN WING AND TAIL WING.
C.- HELICAL WING OR ROTATING WING.
D.- OVER WING OR LONG ROTATING WING.

A.- IN THE SHADE WHENEVER POSSIBLE.
B.- ONLY INSIDE THE HANGAR.
C.- DURING NIGHT.
D.- ONLY DURING CLOUDY DAYS.
A.- THE UNIVERSAL HEAD RIVET INCLUDES ALL RIVETS TYPE.
B.- IS A COMBINATION OF ROUNDHEAD, PLANEHEAD AND CHERRY HEAD RIVET.
C.- IS A COMBINATION OF SQUAREDHEAD, BRIGHTHEAD AND BRAZIER HEAD RIVET.
D.- IS A COMBINATION OF ROUNDHEAD, FLATHEAD AND BRAZIER HEAD RIVET.

A.- THE WIDTH AND HEIGH OF THE SHOP HEAD.
B.- THE THICKNESS OF THE MATERIAL BEING RIVETED.
C.- THE STRESS REQUIRED.
D.- THE STRENGTH OF THE MATERIAL BEING RIVETED.

A.- THE YAW ANGLE.
B.- THE ANGLE OF ATTACK.
C.- THE LANDING ANGLE.
D.- THE TRACK ANGLE.

141.- WHICH IS THE TERM APPLIED TO ALL FORMS OF GRINDING MACHINES? (19127) REF.: AC 65-15A, PAGE 140.
A.- GRINDING WHEELS.
B.- GRINDER.
C.- CUTTING TOOL.
D.- DRILL REMOVER.

A.- TO LINE UP THE EXHAUST GASES AND TO AVOID THE TURBULENCE.
B.- TO SAVE FUEL.
C.- TO INCREASE THE ENGINE POWER.
D.- TO PIPE THE EXHAUST GASES OUT OF THE AIRFRAME.

A.- THE TAIL CONE.
B.- THE EMPENNAGE.
C.- THE FLIGHT CONTROLS.
D.- THE CARGO COMPARTMENT.

A.- CHROMIUM VANADIUM ALLOY AND ALUMINUM ALLOY.
B.- MAGNESIUM ALLOY AND ALUMINUM ALLOY.
C.- COPPER ALLOY AND ALUMINUM ALLOY.
D.- TITANIUM ALLOY AND MANGANESE ALLOY.

A.- A SWITCH.
B.- A RELAY.
C.- A SHUNT.
D.- A SOLENOID.
A. IS THE STUDY OF THE ENERGY OF MECHANICAL WORK.
B. IS THE STUDY OF THE WORK OF MECHANICAL ENERGY.
C. IS THE FORMULA OF THE ENERGY VERSUS MECHANICAL WORK.
D. IS THE TRANSFERERENCE OF HEAT INTO WORK AND MECHANICAL FORCE.

147.- WHAT MAINTENANCE MUST EXECUTE IN THE CARBURETOR STRAINER? (19300) REF.: AC 65-12A, PAGE 125.
A. IT MUST BE REMOVED, CHECKED, CLEANED AND INSTALLED AT SCHEDULED INTERVALS.
B. IT MUST HAVE REGULAR CONTROLS AND CHECKS.
C. IT MUST BE REMOVED AND CLEANED AT SCHEDULED INTERVALS.
D. IT MUST BE CHANGED AT SCHEDULED INTERVALS.

A. THE WIND VELOCITY.
B. THE AIRFOIL.
C. THE AIRFLOW.
D. THE SPEED OF SOUND.

149.- WHAT RIVET REQUIRES SPECIAL INSTALLATION TOOLS, SPECIAL INSTALLATION PROCEDURES AND SPECIAL REMOVAL PROCEDURES? (18756) REF.: FAA-H-8083-30, PAGE 5-60.
A. THE BULBED CHERRYLOCK RIVETS.
B. THE PULL-THRU RIVETS.
C. THE SPECIAL (BLIND) RIVETS.
D. THE SELF-PLUGGING RIVETS.
A.- IT COVERS THE FUSELAGE, WINGS, EMPENNAGE, NACELLES AND PODS.
B.- IT COVERS THE FUSELAGE, WINGS, FLIGHT CONTROLS, NACELLES AND CARGO COMPARTMENTS.
C.- IT COVERS THE PILOTS, PASSENGER, CREW MEMBER AND MECHANIC.
D.- IT COVERS THE ENTIRE AIRPLANE.

A.- THE LEVER.
B.- THE GEAR.
C.- THE WHEEL.
D.- THE AXLE.

A.- THE ALLOYS OF ALUMINUM AND METALS.
B.- THE ALLOYS OF ALUMINUM AND TITANIUM.
C.- THE ALLOYS OF ALUMINUM AND MAGNESIUM.
D.- THE ALLOYS OF ALUMINUM AND COPPER.

A.- USING THE CLEANING MATERIAL IN CLOSE PLACE.
B.- BREATHING OF THE CLEANING FUMES.
C.- EYE AND SKIN CONTAMINATION.
D.- DAMAGE TO THE FINISHES AND SURFACES.
A.- A RIVET HEAD WITH A HOLLOW SHANK OR SLEEVE AND A STEM THAT EXTENDS THROUGH THE HOLLOW SHANK.
B.- A RIVET HEAD WITH A SOLID SHANK OR SLEEVE AND A STEM THAT EXTENDS THROUGH THE ENTIRE SHANK.
C.- A PLAINHEAD RIVET WITH A HOLLOW SHANK OR SLEEVE AND A STEM THAT EXTENDS THROUGH THE SPECIAL SHANK.
D.- A FLATHEAD RIVET WITH A COPPER SHANK OR SLEEVE AND A STEM THAT EXTENDS THROUGH THE HOLLOW SHANK.

A.- THE NATURE OF THE MATTER TO BE REMOVED.
B.- THE NATURE OF THE MATERIAL TO BE CLEANED.
C.- THE HELP NEEDED FOR A GOOD CLEANING.
D.- THE KNOWLEDGE OF CLEANING PERSONNEL.

A.- IT HAS MAGNITUDE, LONGITUDE AND FORCE.
B.- IT HAS MAGNITUDE, DIRECTION AND LOCATION.
C.- IT HAS LIFT, DRAG AND EFFECT.
D.- IT HAS AIRFOIL, CHORD AND LIFT.

A.- IT HAS HAVE AN EXACT MEASURE FROM THE AIRCRAFT NOSE.
B.- IT HAS TO BE KNOWN.
C.- IT DOES NOT CHANGE DURING THE LIFE OF THE AIRCRAFT.
D.- IT HAS TO BE CLOSE TO THE AIRCRAFT NOSE.
A.- THEY ARE THE ROLL PIN, WIRE PIN AND COTTER PIN.
B.- THEY ARE THE TAPER PIN, FLATHEAD PIN AND COTTER PIN.
C.- THEY ARE THE LANDING GEAR PIN, NUT PIN AND SECURITY PIN.
D.- THEY ARE THE SAFETY CLIP PIN, ROUNDHEAD PIN AND ROLL PIN.

159.- HOW MANY WAYS OF GROUPING AIRCRAFT INSTRUMENTS ARE THERE? (18806) REF.: AC 65-15A, PAGE 469.
A.- THERE ARE MANY WAYS OF GROUPING AIRCRAFT INSTRUMENTS.
B.- THERE ARE TWO WAYS OF GROUPING AIRCRAFT INSTRUMENTS.
C.- THERE ARE VARIOUS WAYS OF GROUPING AIRCRAFT INSTRUMENTS.
D.- THE AIRCRAFT INSTRUMENTS DISTRIBUTION DEPEND THE COCKPIT SIZE.

A.- THERE ARE ONLY TWO SIMPLM E MACHINES.
B.- THERE ARE ONLY TWENTY TWO SIMPLE MACHINES.
C.- THERE ARE EIGHT SIMPLE MACHINES.
D.- THERE ARE ONLY SIX SIMPLE MACHINES.

A.- WIRE OR RIBBON.
B.- CABLE OR TAPE.
C.- RULE OR LEAD.
D.- ROUND OR SQUARE.
A.- THE OBJECT WILL HAVE EXTRA STRENGTH.
B.- THE RESULTS IN WORK WILL BE OF DIFFERENT ALLOYS.
C.- THE RESULTS IN WORK WILL BE OF SUPERIOR QUALITY.
D.- THE RESULTS IN WORK WILL BE OF INFERIOR QUALITY.

A.- VERY FEW TYPES.
B.- HUNDREDS OF DIFFERENT TYPES.
C.- ABOUT FOUR OR FIVE DIFFERENT TYPES.
D.- MANY DIFFERENT TYPES.

A.- ALL CONSTRUCTION HAVE THE SAME DISADVANTAGES.
B.- ALL CONSTRUCTION HAVE THE SAME ADVANTAGES.
C.- IT HAS NO AdvANTAGES.
D.- IT HAS A NUMBER OF AdvANTAGES.

165.- WHAT DO PROPELLERS OF AIRCRAFT POWERED BY RECIPROCATING OR TURBOPROP ENGINES DO WITH RESPECT TO THE AIR? (19102) REF.: AC 65-12A, PAGE 1.
A.- ACCELERATE A SMALL MASS OF AIR THROUGH A LARGE VELOCITY CHANGE.
B.- ACCELERATE A LARGE MASS OF AIR THROUGH A SMALL VELOCITY CHANGE.
C.- ACCELERATE A LARGE MASS OF AIR THROUGH A LARGE VELOCITY CHANGE.
D.- ACCELERATE A SMALL MASS OF AIR THROUGH A SMALL VELOCITY CHANGE.
166.- WHAT FURNISHES THE POWER NEEDED TO ROTATE THE PROPELLER BLADES? (19308) REF.: AC 65.12A, PAGE 325.
 A.- THE FIRE SYSTEM.
 B.- THE PISTONS.
 C.- THE ENGINE.
 D.- THE CYLINDERS.

 A.- IN MANY TURBINE AND RECIPROCATING ENGINES.
 B.- IN AN ACCESSORY REDUCTION GEARBOX.
 C.- IN A PROPELLER REDUCTION GEARBOX.
 D.- IN A TURBINE REDUCTION GEARBOX.

 A.- SHOULD HAVE A KNOWLEDGE OF ONWARD PHYSICS.
 B.- SHOULD HAVE A KNOWLEDGE OF BASIC CHEMISTRY.
 C.- SHOULD HAVE A KNOWLEDGE OF BASIC METEOROLGY.
 D.- SHOULD HAVE A KNOWLEDGE OF BASIC PHYSICS.

169.- WHAT LIMITS OIL PRESSURE TO THE VALUE SPECIFIED BY THE ENGINE MANUFACTURER? (19297) REF.: AC 65-12A, PAGE 300.
 A.- THE OIL COOLER SYSTEM.
 B.- ALL THE OIL CONTROL SYSTEM.
 C.- THE OIL PRESSURE REGULATOR.
 D.- THE OIL PRESSURE RELIEF VALVE.

 A.- THE WING FLAPS AND THE LEADING EDGES.
 B.- THE MAIN FLIGHT CONTROLS.
 C.- THE ENTIRE WING.
 D.- THE WING FLAPS.
A.- ONLY ONE MAIN LONGITUDINAL MEMBER.
B.- TWO MAIN LONGITUDINAL MEMBERS.
C.- SEVERAL MAIN LONGITUDINAL MEMBERS.
D.- ONE MAIN LONGITUDINAL MEMBER AND ONE SECONDARY MEMBER.

A.- THE AIRCRAFT SPEED.
B.- THE MIXTURE CONTROL SYSTEM.
C.- THE ENGINE POWER.
D.- THE AIRCRAFT ALTITUDE AND ACTITUDE.

A.- THEY CAN BE USED IN THE SAME APPLICATIONS AS THE FRICTION LOCK RIVET.
B.- THEY CAN BE USED IN THE SAME APPLICATIONS AS THE PULL-THRU RIVET.
C.- THEY CAN BE USED IN THE SAME APPLICATIONS AS THE BULBED CHERRYLOCK RIVET.
D.- THEY CAN BE USED IN THE SAME APPLICATIONS AS THE ROUNDHEAD RIVET.

A.- IS THE WEIGHT OF AN AIRCRAFT SHOWED IN THE SCALE.
B.- IS THE MAXIMUM AUTHORIZED LOAD WEIGHT OF THE AIRCRAFT AND THE FUEL.
C.- IS THE MAXIMUM WEIGHT OF THE AIRCRAFT WEIGHED IN ANY MOMENT.
D.- IS THE MAXIMUM AUTHORIZED WEIGHT OF THE AIRCRAFT AND ITS CONTENTS.
175.- WHICH AIRPLANE PARTS ARE EQUIPPED WITH AN AXLE ATTACHED TO THE LOWER CYLINDER TO PROVIDE FOR INSTALLATION OF THE WHEELS? (19270) REF.: AC 65-15A, PAGE 343.
A.- THE SHOCK STRUTS.
B.- THE FLAPS.
C.- THE ENGINE.
D.- THE MAIN FLIGHT CONTROLS.

A.- THE LEADING EDGE, THE TRAILING EDGE AND THE CHORD LINE.
B.- THE SPARS, THE RIBS OR BULKHEADS AND THE STRINGERS OR STIFFENERS.
C.- THE METAL SPAR SHAPES, THE SKIN AND THE STRINGERS OR STIFFENERS.

A.- THE FIVE MAIN PARTS OF THE AIRCRAFT.
B.- THE AIRFOIL AND THE POWER PLANTS.
C.- THE POWER PLANTS.
D.- THE LANDING GEAR.

A.- THE FERROMAGNETIC INSPECTION.
B.- THE LIQUID PENETRANT INSPECTION.
C.- THE ACOUSTIC EMISSION INSPECTION.
D.- THE MAGNETIC PARTICLE INSPECTION.
A. THE LAW OF VELOCITY AND SPEED.
B. THE BERNOULLI'S PRINCIPLE.
C. THE PASCAL'S LAW OF MOTION.
D. THE NEWTON'S LAW OF MOTION.

180.- WHAT MUST BE CAREFULLY DETERMINED IN ANY DAMAGED PART? (19125) REF.: AC 65-15A, PAGE 130.
A. THE ADJACENT PART.
B. THE FASTENER OF THE PART.
C. THE ALLOY OF THE PART.
D. THE FUNCTION OF THE PART.

A. ITS VOLUME AND COMPOSITION.
B. ITS BASIC ELEMENTS AND ATOMIC WEIGHT.
C. ITS WEIGHT AND VOLUME.
D. ITS COMPOSITION AND GRAVITY.

A. THE SHEAR STRENGTH RIVET AND THE HEAT TREAT RIVET.
B. THE COUNTERSUNK HEAD RIVET AND THE SOLID RIVET.
C. THE FLATHEAD RIVET LIKE THE ROUNDHEAD RIVET.
D. THE BRAZIER HEAD RIVET AND THE UNIVERSAL HEAD RIVET.

A. IS TO KNOW ITS PHYSICAL COMPOSITION.
B. IS TO KNOW ITS CHEMICAL COMPOSITION.
C. IS TO KNOW THE OVEN TEMPERATURE.
D. IS TO KNOW THE COOLING PROCEDURE.
A. THE JET NOZZLE.
B. THE TAILPIPE.
C. THE EXHAUST CONE ASSEMBLY.
D. THE THRUST REVERSE.

A. CONSIST IN GLUEING FABRIC OVER THE METAL TO MAKE AN ENVELOPE OR FOLD.
B. CONSIST IN EMBROIDERING COTTON TO MAKE AN ENVELOPE OR SLEEVE.
C. CONSISTS IN GLUEING FABRIC TO MAKE AN ENVELOPE OR SLEEVE.
D. CONSISTS IN SEWING FABRIC TO MAKE AN ENVELOPE OR SLEEVE.

A. INCLUDES ALL OPERATING EQUIPMENT THAT HAS A FIXED LOCATION AND IS ACTUALLY INSTALLED IN THE AIRCRAFT.
B. INCLUDES ALL EQUIPMENT WEIGHT THAT HAS A MOVABLE LOCATION AND IS ACTUALLY CHECKED.
C. INCLUDES SOME OPERATING EQUIPMENT THAT HAS A POSITION AND ITS AIRWORTHINESS.
D. INCLUDES THE ENTIRE OPERATING EQUIPMENT THAT HAS A FIXED OR MOVABLE LOCATION AND IS ACTUALLY INSTALLED IN THE AIRCRAFT.

187.- WHERE IS LOCATED THE DISCHARGE NOZZLE IN A CARBURATOR? (19109) REF.: AC 65-12A, PAGE 115.
A. DIRECTLY IN THE MANIFOLD PRESSURE.
B. IN THE HIGH PRESSURE SIDE OF THE CARBURATOR.
C. IN THE THROAT PRESSURE SIDE OF THE VENTURI.
D. IN THE THROAT OF THE VENTURI.
A.- IS GRADUATED WITH NUMERALS FROM ZERO TO NINE INCLUSIVE.
B.- IS GRADUATED WITH NUMERALS, LETTERS AND SYMBOLS INCLUSIVE.
C.- THE GRADUATION DEPENDS ON THE AIRPLANE MANUFACTURER.
D.- THE GRADUATION DEPENDS ON THE INSTRUMENT MANUFACTURER.

A.- IS ITS VOLUME PER UNIT OF WEIGHT.
B.- IS ITS WEIGHT PER UNIT OF VOLUME.
C.- IS ITS COLOR AND WEIGHT PER UNIT OF VOLUME.
D.- IS ITS CHEMISTRY COMPOSITION AND PHYSICAL RESISTANCE.

A.- INTO ONE OR MORE SECTIONS.
B.- INTO THREE OR MORE SECTIONS.
C.- AT LEAST INTO TWELVE SECTIONS.
D.- INTO FOUR OR SIX SECTIONS.

191.- WHAT TEMPERATURE WILL INDICATE THE CYLINDER HEAD TEMPERATURE INDICATOR PRIOR TO OPERATE THE ENGINE? (19307) REF.: AC 65-12A, PAGE 322.
A.- WILL INDICATE THE CYLINDER TEMPERATURE.
B.- WILL INDICATE THE FREE OUTSIDE AIR TEMPERATURE.
C.- WILL INDICATE ANY FREE TEMPERATURE.
D.- WILL INDICATE THE ENGINE GENERAL TEMPERATURE.
A.- IS A ROPE USED TO TIE THE WING FROM THE LEADING EDGE TO TRAILING EDGE.
B.- IS A STRAIGHT LINE WHICH CROSSES THE WING FROM THE ROOT TO THE WING TIP.
C.- IS AN IMAGINARY STRAIGHT LINE WHICH PASSES THROUGH THE SECTION FROM THE LEADING EDGE TO TRAILING EDGE.
D.- IS A REAL STRAIGHT LINE WHICH UNITES THE SECTION FROM THE LEADING EDGE TO TRAILING EDGE.

A.- IS THE AFT AND REAR BALANCE LIMITS.
B.- IS THE LIMITS WITHIN WHICH THE AIRCRAFT MUST BALANCE.
C.- ARE ALL THE DISTANCES THAT ARE CONSIDERED DURING WEIGHING.
D.- IS WHERE THE WEIGH IS CONCENTRATED.

A.- AS A POINT AT WHICH THE BALANCE OF THE AIRCRAFT IS OPTIMUM.
B.- AS A POINT AT WHICH ALL THE WEIGHT OF THE AIRCRAFT IS CONCENTRATED.
C.- AS THE REAR AND FRONT POINT AT WHICH ALL THE WEIGHT OF THE AIRCRAFT IS LIMITED.
D.- AS A PLACE WHERE ALL THE LOAD IN THE AIRCRAFT IS CONCENTRATED.

195.- WHAT DOES THE CARBURETOR HAVE IN ORDER TO SHUT OFF THE FUEL TO STOP THE ENGINE? (19107) REF.: AC 65-12A, PAGE 115.
A.- A FUEL INJECTION AND A MANUAL START SYSTEM.
B.- AN AUTOMATIC SELECTOR VALVE IN THE CARBURATOR.
C.- AN IDLE CUTOFF SYSTEM.
D.- A FUEL CONTROL IN THE COCKPIT.
196.- WHAT DOES THE CARBURETOR AIR TEMPERATURE GAGE INDICATE? (19312) REF.: AC 65-12A PAGE 431.
A.- INDICATE THE CYLINDERS TEMPERATURE AND THE AIR AROUND THE CARBURATOR.
B.- THE QUANTITY OF THE AIR THAT IS IN THE CYLINDERS.
C.- THE TEMPERATURE OF THE AIR BEFORE IT ENTERS THE CARBURATOR.
D.- THE PRESSURE AND THE TEMPERATURE OF THE AIR AFTER IT ENTERS THE CARBURATOR.

A.- CREATES AN UNBALANCE CONDITION WITH RESULTING VIBRATION.
B.- CREATES A BIG LIFT CONDITION WITH RESULTING IN A SMOOTH FLIGHT.
C.- CREATES SOME ADDITIONAL DRAG AND THE ENGINE HAS TO DEVELOP MORE POWER.
D.- CREATES A BALANCE CONDITION WITH RESULTING IN LESS VIBRATION.

A.- NUMBERS AND LETTERS.
B.- THE WIRE METAL.
C.- THE AMOUNT OF WIRES IN EACH STRAND AND THE QUANTITY OF CABLES.
D.- THE NUMBER OF STRANDS AND THE NUMBER OF WIRES IN EACH STRAND.

A.- THE BAGGAGE COMPARTMENT.
B.- THE CABIN COMPARTMENT.
C.- THE TAIL COMPARTMENT.
D.- THE WING ROOT COMPARTMENT.
200.- WHAT IS THE PURPOSE OF DEVELOPING SPECIAL TOOLS AND DEVICES? (19046) REF.: AC 65-15A, PAGE 133.
A.- TO HELP THE MECHANIC MAKE HIS HOME-WORK ON TIME, COMPLEX AND UP TO DATE.
B.- TO HELP THE MECHANIC MAKE HIS JOB SWIFT, THE BEST AND GOOD.
C.- TO HELP THE MECHANIC MAKE HIS WORK SOFT, RELAXED AND QUICKLY.
D.- TO HELP THE MECHANIC MAKE HIS WORK FASTER, SIMPLER AND BETTER.

A.- SEVEN APPLICATION OF THE BRAKES.
B.- ONE APPLICATION UNTIL A COMPLETE AIRCRAFT STOP.
C.- SEVERAL APPLICATIONS OF THE BRAKES.
D.- TWO FULL BRAKES APPLICATION.

A.- THEY ALSO ARE OPEN-END WRENCHES.
B.- THEY CAN REPLACE HANDY UTILITY TOOLS.
C.- THEY ARE HANDY UTILITY TOOLS.
D.- THEY ARE MANUAL UTILITY TOOLS.

A.- IT TRIES TO COMPRES AN OBJECT.
B.- IT TRIES TO CRUSH AN OBJECT.
C.- IT TRIES TO PRESS AN OBJECT.
D.- IT TRIES TO PULL AN OBJECT APART.

A.- THE TEMPERATURE.
B.- THE PRESSURE.
C.- THE DENSITY.
D.- THE ALTITUDE.

A.- THEY MAY BE EITHER SMOOTH OR BEADED.
B.- THEY MAY BE STRESSED RESISTANCE OR LITTLE SMOOTH.
C.- THEY MAY BE ROUND OR SQUARE.
D.- ALL THEM ARE OVAL.

A.- STRESS CORROSION NEVER OCCURS.
B.- STRESS CORROSION OCCURS AS THE RESULT OF MAINTAINING THE AIRPLANE DIRTY AND IN A DRY ENVIRONMENT.
C.- STRESS CORROSION OCCURS AS THE RESULT OF KEEPING THE AIRPLANE OUT OF THE HANGAR.
D.- STRESS CORROSION OCCURS AS THE RESULT OF THE COMBINED EFFECT OF SUSTAINED TENSILE STRESSES AND CORROSIVE ENVIRONMENT.

A.- THE DURABILITY.
B.- THE STRENGTH.
C.- THE AIRWORTHINESS.
D.- THE STRESSES.
 A.- THE STEEL PROPELLER BLADES.
 B.- THE ALUMINUM ALLOY PROPELLER BLADES.
 C.- THE PURE ALUMINUM PROPELLER BLADES.
 D.- THE MAGNESIUM ALUMINUM ALLOY PROPELLER BLADES.

 A.- RAPIDLY CORRODE ALUMINUM ALLOY AND OTHER METAL.
 B.- SLOWLY CORRODE ALUMINUM ALLOY AND OTHER METAL.
 C.- ARE HARDENER TO ALUMINUM ALLOY AND OTHER METAL.
 D.- LEAVE THE ALUMINUM ALLOY VERY BRIGHT.

 A.- PINK.
 B.- WHITE.
 C.- BLACK.
 D.- BROWN.

211.- SOME AIRCRAFT ARE REQUIRED TO BE WEIGHED AND HAVE THEIR CENTER OF GRAVITY CALCULATED ON A PERIODIC BASIS, TYPICALLY HOW OFTEN IS THIS? (18713) REF.: FAA-H-8083-30, PAGE 4-2.
 A.- EVERY FIVE YEARS.
 B.- EVERY THREE YEARS.
 C.- ALMOST EVERY MONTH.
 D.- WHEN THE OWNER WANTS.
212.- IF SOME AIRCRAFT ARE NOT WEIGHED WITH THE WHEELS ON THE SCALES, WHERE ARE THEY WEIGHED? (18723) REF.: FAA-H-8083-30, PAGE 4-16.
A.- AT THE JACKING POINTS OR AT SPECIAL WEIGHED POINTS.
B.- AT THE WHEELS POINTS OR AT SPECIAL WEIGHED POINTS.
C.- AT THE JACKING POINT OR AT SPECIAL WEIGHED POINT.
D.- AT THE NOSE AND TAIL POINTS OR AT SPECIFIC WEIGHED POINTS.

A.- HAVE EXCELLENT HEAT STABILITY.
B.- REACTS FAVORABLY WITH AROMATIC GASOLINES.
C.- IS VERY EASE TO WORK.
D.- RESISTS THE STRIKES VERY WELL.

A.- GLASS, CERAMIC AND PLASTICS.
B.- SILICON AND GERMANIUM.
C.- GOLD, COPPER AND SILVER.
D.- MATERIAL WITH FREE ELECTRONS.

A.- ROLLER BARS, WELDING SHEETS, FLIXIBLE TUBING, FORGINGS AND CASTINGS.
B.- THIN, THICK, MEDIUM, SMALL SIZE AND BIG SIZE.
C.- BARS, SHEETS, TUBING, EXTRUSIONS, FORGINGS AND CASTINGS.
D.- COOL, WARM, HOT, ICED, FROZEN AND REFRIGERATE.
216.- WHICH ARE THE INCREMENTS OF RIVETS SHANK DIAMETERS? (18760) REF.: FAA-H-8083-30, PAGE 5-64.
 A.- 1/54-INCH.
 B.- 1/16-INCH.
 C.- 1/32-INCH.
 D.- 1/64-INCH.

 A.- ONLY SEWN REPAIRS ARE PERMITTED.
 B.- SEWN AND UNSEWN REPAIRS ARE PERMITTED.
 C.- ONLY UNSEWN REPAIRS ARE PERMITTED.
 D.- THE REPAIR DEPEND THE LONG DAMAGE.

218.- WHAT OTHER USE CAN BE GIVEN TO SEVERAL MATERIALS USED FOR THINNING, SPECIFIC PAINTS AND LACQUERS? (19122) REF.: AC 65-15A, PAGE 113.
 A.- THEY ARE ALSO AVAILABLE FOR SOLVENT CLEANING.
 B.- THEY ARE ALSO AVAILABLE FOR PAINT REMOVER AND CORROSION CONTROL.
 C.- THEY ARE ALSO AVAILABLE FOR PAINT FINISHING.
 D.- THEY ARE ALSO AVAILABLE TO JOIN COMPOSITES.

 A.- CHECK THE MATERIAL THAT YOU HAVE TO CUT.
 B.- SELECT AN APPROPRIATE SAW BLADE.
 C.- CHECK THE WEATHER.
 D.- CHECK THE ELECTRICAL GENERATOR.

 A.- TO PREVENT FLUID FROM BEING CONTAMINATED.
 B.- TO PREVENT FLUID FROM PASSING A CERTAIN POINT.
 C.- TO RE-USE THE LIQUIDS MANY TIMES.
 D.- TO AVOID LOSS OF LIQUID AND TO CANCEL THE FLIGHT.

A. - THE BOLTS.
B. - THE SCREWS.
C. - THE FORKS.
D. - THE STUD BOLTS.

A. - THE FLIGHT OPERATIONAL SAFETY, ECONOMICAL ARRIVAL AND RELIABLE GROUND OPERATION.
B. - THE ON-TIME DISPATCH, ECONOMICAL AND RELIABLE OPERATION.
C. - THE MAINTENANCE WORK, FLIGHT SAFETY AND RELIABLE OPERATION.
D. - THE SAFE, ECONOMICAL AND RELIABLE OPERATION.

A. - WHERE CLEARANCE IS REQUIRED FOR ADJACENT MEMBERS.
B. - WHERE EXTRA STRENGTH IS REQUIRED.
C. - WHERE TOLERANCE IS REQUIRED FOR MAIN MEMBERS.
D. - WHERE PASSENGER SEATS ARE CLOSE TO THE WINDOW.

A. - REMOVE HYDRAULIC, SKIDROL, OIL AND SURFACE DIRT FROM THE ALUMINUM SURFACE USING ANY CAUSTIC SUITABLE MILD CLEANER.
B. - REMOVE OLD PAINT, CORROSION, OIL AND SURFACE WASTE FROM THE ALUMINUM SURFACE USING ANY SUITABLE MILD CLEANER.
C. - REMOVE OIL AND SURFACE DIRT FROM THE ALUMINUM SURFACE USING ANY SUITABLE MILD CLEANER.
D. - REMOVE OIL, GREASE AND SURFACE DIRT FROM THE ALUMINUM SURFACE USING ANY SUITABLE MILD CLEANER OR SOAP.
A.- TO PREVENT DAMAGE.
B.- TO PROTECT THE O-RINGS.
C.- TO RELIEF PRESSURE.
D.- TO MAINTAIN PRESSURE IN LIMITS.

A.- WHEN THE CORROSION IS ABSENT FROM THE SURFACE AND INSULATION IS ADEQUATELY MAINTAINED.
B.- WHEN THE SURFACE FINISH HAS ZINC CHROMATE AND INSULATION IS ADEQUATELY COVERED.
C.- WHEN THE REWORKED SURFACE FINISH AND INSULATION ARE ADEQUATELY MAINTAINED.
D.- WHEN THE ORIGINAL SURFACE FINISH AND INSULATION ARE ADEQUATELY MAINTAINED.

A.- THEY ARE USED TO SMOOTH AND ENLARGE HOLES TO EXACT SIZE.
B.- THEY ARE USED TO ENLARGE HOLES TO EXACT SIZE.
C.- THEY ARE USED TO POLISH METAL BEFORE PAINTING IT.
D.- THEY ARE USED TO FIND CORROSION AND TO TREAT IT.

A.- THE FOG, CLOUD AND LIGHTNING.
B.- THE METAL COST AND PROTECTION.
C.- THE FUEL PRICE AND THE NOISE.
D.- THE RAIN, SNOW AND ICE.
229.- WHAT DOES PROPELLER EFFICIENCY DEPEND ON? (20001) REF.: AC 65-12A, PAGE 325.
A. HOW MUCH THE PROPELLER SLIPS.
B. THE CHORD LINE OF PROPELLER.
C. THE PROPELLER LENGTH.
D. THE NUMBERS OF BLADES.

230.- HOW MUCH VARIES THE PROPELLER EFFICIENCY? (19309) REF.: AC 65-12A, PAGE 325.
A. IT DEPENDS ON ENGINE POWER.
B. FROM 25% TO 50%.
C. FROM 75% TO 99%.
D. FROM 50% TO 87%.

A. WILL DETECT SURFACE CRACKS OR POROSITY DEFECT.
B. WILL DETECT UNDER-SURFACE CRACKS OR VOIDS DEFECT.
C. WILL DETECT ELECTRICAL DISCONTINUITY OR FLAWS.
D. WILL DETECT INVISIBLE CRACKS OR SPOT POINTS.

232.- WHAT DOES AN ORIGINAL SURFACE TREATMENT FOR STEEL PARTS ALSO INCLUDE TO REMOVE ALL TRACES OF DIRT, OIL, GREASE, OXIDES, AND MOISTURE? (18790) REF.: FAA-H-8083-30, PAGE 6-17.
A. ALSO INCLUDES A WEAR RESISTANCE PROCEDURE.
B. IT INCLUDES AN ORIGINAL SURFACE TREATMENT.
C. USUALLY INCLUDES A CLEANING TREATMENT.
D. ALSO INCLUDES A PARTS REMOVAL.
A.- DOMESTIC OR IMPORTED FIBERS.
B.- NATURAL AND ARTIFICIAL FIBERS.
C.- ORGANIC AND SYNTHETIC FIBERS.
D.- GLUED OR SEWING FIBERS.

A.- ALL METALLICS MEMBERS.
B.- ONLY IRON ALLOY MEMBERS.
C.- ONLY STAINLESS STEEL MEMBERS.
D.- ONLY ALUMINUM ALLOY MEMBERS.

A.- IN RELATION TO THE CHORD LINE.
B.- IN RELATION TO THE ROOT WIDTH OF THE WING.
C.- IN RELATION TO THE LENGTH OF THE WING.
D.- IN RELATION TO THE WIDTH OF THE WING.

A.- IN THE INTERIOR.
B.- ON THE SURFACE.
C.- WITH A TAG.
D.- WITH A FORM 8130-3 ATTACHED.
237.- IN WHAT CONSISTS A RADIAL ENGINE? (19303) REF.: AC 65-12A, PAGE 5.
A.- IN A ROW OR ROWS OF CYLINDERS ARRANGED RADially ABOUT A CENTRAL CRANKSHAFT.
B.- IN A ROW OR ROWS OF CYLINDERS ARRANGED RADially ABOUT A CENTRAL CRANKCASE.
C.- IN A ROW OR ROWS OF CYLINDERS ARRANGED OPPOSITE ABOUT A CENTRAL CRANKCASE.
D.- IN A LINE OR LINES OF CYLINDERS ARRANGED IN LINE ABOUT A CRANKCASE.

A.- IS THE TYPE OF FLIGHT.
B.- IS THE MAIN AND COCKPIT CABIN.
C.- IS THE MAIN SOURCE OF DRAG.
D.- IS THE MAIN SOURCE OF LIFT.

239.- WHEN IS IT NECESSARY TO MAKE REVISION TO A DRAWING? (18650) REF.: FAA-H-8083-30, PAGE 2-6.
A.- WHEN THERE IS A CHANGE OF YEAR.
B.- WHEN THERE IS A CHANGE IN AIRWORTHINESS CONDITION.
C.- WHEN CHANGES IN DIMENSIONS, DESIGN OR MATERIALS ARE MADE.
D.- WHEN THERE IS A CHANGE IN AIRCRAFT CERTIFICATION.

240.- WHAT MUST YOU NEVER DO WHEN WEIGHING AN AIRCRAFT? (18722) REF.: FAA-H-8083-30, PAGE 4-16.
A.- WEIGH IT WITH THE FUEL TANKS EMPTY.
B.- WEIGH IT WITH THE OIL TANKS PARTIALLY FULL.
C.- WEIGH IT WITH THE HYDRAULIC TANKS PARTIALLY FULL.
D.- WEIGH IT WITH THE FUEL TANKS PARTIALLY FULL.
A.- IT HAS A PHOSPHATE BASE.
B.- IT HAS A SYNTHETIC BASE.
C.- IT HAS A NATURAL BASE.
D.- IT HAS AN ACETYLENE BASE.

A.- THEY ARE MADE OF ALUMINUM OR STEEL ALLOY.
B.- THEY ARE MADE OF COPPER OR MAGNESIUM ALLOY.
C.- THEY ARE MADE OF IRON OR ALUMINUM ALLOY.
D.- THEY ARE MADE OF STEEL OR ALUMINUM ALLOY.

A.- TO HOUSE THE AUXILIARY POWER UNIT.
B.- TO HOUSE BAGGAGE.
C.- TO HOUSE THE ENGINES.
D.- TO HOUSE FUEL.

A.- FLARE.
B.- DRAG.
C.- YAW.
D.- PITCH.
245.- SELF-LOCKING NUTS ARE USED ON AIRCRAFT TO (18833) REF.: FAA-H-8083-30, PAGE 5-46
A.- PROVIDE TIGHT CONNECTIONS WHICH WILL SHAKE LOOSE UNDER SEVERE VIBRATIONS.
B.- PROVIDE POOR CONNECTIONS WHICH WILL NOT SHAKE LOOSE UNDER SEVERE VIBRATION.
C.- PROVIDE TIGHT CONNECTIONS WHICH WILL SHAKE LOOSE UNDER LIGHT VIBRATIONS.
D.- PROVIDE TIGHT CONNECTIONS WHICH WILL NOT SHAKE LOOSE UNDER SEVERE VIBRATION.

A.- ROUGHENING, ETCHING OR PITTING OF THE SURFACE.
B.- CONTAMINATION OF THE METAL
C.- WHITENNING OF THE METAL
D.- HEATING OF THE SURFACE.

247.- WHAT HAS TO DO A MECHANIC IN ORDER TO MAKE A RIVET HOLE OF THE CORRECT SIZE? (19292) REF.: AC 65-15A, PAGE 169.
A.- AT THE END DRILL A HOLE SLIGHTLY UNDERSIZE.
B.- FIRST PUT GREASE AT THE HOLE.
C.- FIRST DRILL A HOLE SLIGHTLY UNDERSIZE.
D.- FIRST DRILL A HOLE SLIGHTLY OVERSIZE.

A.- IN PLACE OF STANDARD SA BOLTS AND NUTS.
B.- IN PLACE OF CONVENTIONAL AN BOLTS AND NUTS.
C.- IN PLACE OF STRENGTH AND LIGHT AN BOLTS AND NUTS.
D.- IN PLACE OF ANY BOLTS AND NUTS IF THEY ARE THE SAME SIZE.
249.- **WHAT AIRPLANE SECTION IS CALLED LEADING EDGE?** (18822) REF.: AC 65-15A, PAGE 197.

A. - THE FRONT SECTION OF WINGS, STABILIZERS OR OTHER AIRFOILS.
B. - THE AFT SECTION OF WINGS, STABILIZERS OR OTHER AIRFOILS.
C. - ANY SECTION OF WINGS, STABILIZERS OR AIRFOILS.
D. - ANY STRUCTURAL PART OF AN AIRCRAFT.

250.- **WHY AIR IS CONSIDERED A FLUID?** (19286) REF.: AC 65-15A, PAGE 27.

A. - BECAUSE IS A SUBSTANCE WHICH MAY BE MADE TO FLOW OR CHANGE IT’S SHAPE BY THE APPLICATION OF MODERATE PRESSURE.
B. - BECAUSE IT HAS WEIGHT AND VOLUME.
C. - BECAUSE IT CAN BE USED IN BALLOON AND TIRES.
D. - AIR IS NOT CONSIDERED A FLUID.

251.- **ABSOLUTE PRESSURE IS EQUAL TO** REF.: FAA-H-8083-30, PAGE 3-25.

A. - INSTRUMENT PRESSURE.
B. - ATMOSPHERIC PRESSURE.
C. - GAUGE PRESSURE PLUS ATMOSPHERIC PRESSURE.
D. - GAUGE PRESSURE MINUS ATMOSPHERIC PRESSURE.

A. - A SPECIFIC WEIGHT.
B. - A SPECIFIC STRENGTH.
C. - A SPECIFIC CORROSION RESISTANCE.
D. - A SPECIFIC ELECTRICAL POTENTIAL.

A.- NO, IN THOSE CASES SPECIAL WRENCH MAY BE USED.
B.- YES, IN THOSE CASES TORQUE WRENCH MAY BE USED.
C.- NO, IN THOSE CASES COMMON WRENCH MUST BE USED.
D.- YES, IN THOSE CASES TORQUE WRENCH MUST BE USED.

A.- IS CONTROLLED AROUND ONE OR MORE OF THREE AXES OF ROTATION.
B.- IS CONTROLLED AROUND MAIN AND SECONDARY FLIGHT CONTROLS.
C.- IS CONTROLLED FROM THE COCKPIT.
D.- IS CONTROLLED AROUND ONE AXIS OF ROTATION AT ONE TIME.

A.- NOT LESS THAN THREE TIMES THE THICKNESS OF THE THINNER SHEET.
B.- NO LESS THAN THREE TIMES THE THICKNESS OF THE ThICKER SHEET.
C.- NO MORE THAN THREE TIMES THE THICKNESS OF THE ThICKER SHEET.
D.- EQUAL TO THREE TIMES THE THICKNESS OF THE ThICKER SHEET.

A.- DEPENDS ON THE PROPORTION.
B.- DOES NOT VARY.
C.- VARIES INVERSELY.
D.- VARIES DIRECTLY.
A.- THE RECIPROCATING AND TURBOPROPELLER ENGINES HAVE BETTER ECONOMY THAN THE TURBOJET ENGINES.
B.- THE RECIPROCATING AND TURBOJET ENGINES HAVE BETTER ECONOMY THAN THE TURBOPROPELLER ENGINES.
C.- THE TURBOPROPELLER ENGINES HAVE BETTER ECONOMY THAN THE TURBOJET AND RECIPROCATING ENGINES.
D.- AT LOW SPEED ALL ENGINES BURN THE SAME QUANTITY OF FUEL.

A.- IS SAFER TO TAKEOFF AND LAND AT LOWER AIRSPEEDS THAN AT HIGHER SPEEDS.
B.- IS SAFER TO TAKEOFF AND LAND AT HIGHER AIRSPEEDS THAN AT LOWER SPEEDS.
C.- THE SAFEST TAKEOFF AND LANDING SPEED DEPEND ON PILOT'S ABILITY.
D.- THE SAFER TAKEOFF AND LANDING SPEEDS DEPEND ON THE AIRPLANE MODEL.

A.- BY A CONTINUOUS-FLOW CYCLE.
B.- BY A COMPRESSOR.
C.- BY A TURBINE.
D.- BY TWO AXLES.

A.- THE ROTORS AND THE MAIN STRUCTURE.
B.- THE TAIL CONE AND THE FUSELAGE.
C.- THE CABIN AND THE TAIL CONE.
D.- THE CABIN AND THE CARGO COMPARTMENT.
261.- **BY WHAT MEANS METALS CAN BE JOINED? REF.: AC 65-15A, PAGE 247.**

A.- **BY ANY MEANS LIKE BOLTING, RIVETING, WELDING, BRAZING, SOLDERING OR ADHESIVE BONDING.**

B.- **BY AUTOMATIC MEANS LIKE BOLTING, RIVETING, SOLDERING MACHINE OR ADHESIVE BONDING MACHINE.**

C.- **BY ELECTRICAL MEANS LIKE WELDING, BRAZING, SOLDERING OR ADHESIVE BONDING.**

D.- **BY MECHANICAL MEANS LIKE BOLTING, RIVETING, WELDING, BRAZING, SOLDERING OR ADHESIVE BONDING.**

262.- **BY WHICH METHODS ARE NUTS, BOLTS, AND SCREWS SAFETIED WITH WIRE? REF.: FAA-H-8083-30, PAGE 5-80.**

A.- **BY THE SHORT WIRE OR LONG AND EXTRA LONG WIRE METHOD.**

B.- **BY THE SINGLE WIRE FOR ELECTRICAL CONNECTORS OR DOUBLE TWIST METHOD FOR PLUG AND BOLTS.**

C.- **BY THE SINGLE WIRE OR DOUBLE TWIST METHOD.**

D.- **BY THE TRIPLE WIRE OR UNIQUE TWIST METHOD.**

263.- **DURING HOVERING FLIGHT IN A NO-WIND CONDITION, HOW IS THE TIP-PATH PLANE? REF.: AC 65-15A, PAGE 50.**

A.- **DEPEND ON THE PILOT SKILL.**

B.- **HORIZONTAL, THIS IS VERTICAL TO THE GROUND.**

C.- **VERTICAL, THIS IS PARALLEL TO THE GROUND.**

D.- **HORIZONTAL, THIS IS PARALLEL TO THE GROUND.**

264.- **DURING VERTICAL FLIGHT IN A NO-WIND CONDITION, HOW DO LIFT AND THRUST FORCES ACT? REF.: AC 65-15A, PAGE 50.**

A.- **VERTICALLY UPWARD.**

B.- **VERTICALLY DOWNWARD.**

C.- **HORIZONTALLY UPWARD.**

D.- **HORIZONTALLY DOWNWARD.**
A.- THEY ARE MADE FROM EITHER VANADIUM TOOL STEEL OR HIGH-POWER STEEL.
B.- THEY ARE MADE FROM EITHER CARBON TOOL STEEL OR HIGH-SPEED STEEL.
C.- THEY ARE MADE FROM HARD TEMPERED STEEL.
D.- THEY ARE MADE FROM EITHER CROMO NIQUEL VANADIUM STEEL OR LOW-SPEED STEEL.

A.- FROM COPPER ALLOYS.
B.- FROM IRON ALLOYS.
C.- FROM MAGNESIUM ALLOYS.
D.- FROM TITANIUM ALLOYS.

A.- EXPENSIVE AND VALUABLE.
B.- IMPORTANT AND SECURE.
C.- INVALUABLE AND CHEAPER.
D.- GOODS AND HELPFUL.

A.- BY MEANS OF VARIOUS TYPES OF VALVES.
B.- BY MEANS OF VARIOUS TYPES OF FILTERS.
C.- BY MEANS OF VARIOUS TYPES OF PACKING AND O-RINGS.
D.- BY MEANS OF VARIOUS TYPES OF LIQUIDS.

A.- ARE VERY DIFFERENT.
B.- ARE THE SAME.
C.- ARE SIMILAR.
D.- ARE IDENTICAL.

A.- ARE COMPOSITE COVERED.
B.- ARE FABRIC COVERED.
C.- ARE FABRIC AND METAL COVERED.
D.- ARE PLASTIC, FABRIC, METAL AND COMPOSITE COVERED.

A.- THE METHODS ARE SPECIFIC BY EACH AIRCRAFT MODEL.
B.- THE METHODS ARE NUMEROUS AND VARIED.
C.- THE METHODS DEPEND THE CMA CATEGORY.
D.- THE METHODS ARE SPECIFIC FOR EACH COUNTRY.

A.- SPEED LIKE QUICKLY AND VELOCITY LIKE FAST.
B.- LIKE SYNONYM.
C.- AS IF THEY MEAN THE SAME THING.
D.- AS THEY WERE DIFFERENT THING.
A.- THEY ARE ATTACHED BY BOLTING OR STRUCTURAL WELDING.
B.- THEY ARE ATTACHED BY RIVETING OR SPOT WELDING.
C.- THEY ARE ATTACHED BY GLUEING OR SPOT WELDING.
D.- THEY ARE ATTACHED BY SOLDERING, BOLTING, RIVETING OR ANY KIND OF WELDING.

A.- DECORATIVE, PROTECTIVE AND PRESERVER.
B.- APPEARANCE, PRIMER AND PAINT.
C.- PROTECTIVE, ANTI-DETERIORATION AND FINISH.
D.- PROTECTIVE, APPEARANCE AND DECORATIVE.

A.- LIKE A SANDWICH STRUCTURE.
B.- LAMINATED OR PLAIN.
C.- WITH OR WITHOUT AN INNER CORE OF MATERIAL.
D.- WITH OR WITHOUT AN EXTERNAL CORE OF MATERIAL.

276.- HOW CAN MAGNETO IGNITION SYSTEMS BE CLASSIFIED? REF.: AC 65-12A, PAGE 177.
A.- PRIMARY AND SECONDARY.
B.- HIGH CURRENT AND LOW CURRENT.
C.- HIGH IGNITION AND LOW IGNITION.
D.- HIGH TENSION AND LOW TENSION.
277.- HOW DO CHANGES TAKE PLACE WITH SUPERSONIC FLOW IN VELOCITY, PRESSURE, TEMPERATURE, DENSITY AND FLOW DIRECTION? REF.: AC 65-15A, PAGE 59.
A.- THE CHANGES TAKE PLACE SUDDENLY AND OVER A SHORT DISTANCE.
B.- THE CHANGES TAKE PLACE SMOOTHLY AND OVER A SHORT DISTANCE.
C.- THE CHANGES TAKE PLACE SMOOTHLY AND OVER A LONG DISTANCE.
D.- THE CHANGES TAKE PLACE OVER ALL THE AIRFOIL.

A.- THE PRESSURE INCREASES.
B.- THE PRESSURE DECREASES.
C.- THE AREA INCREASES.
D.- THE VELOCITY AFFECTS THE PRESSURE.

A.- THE ENVIRONMENT AFFECTS GREATLY THE CORROSION CHARACTERISTICS.
B.- THE ENVIRONMENT AFFECTS ONLY MINIMALLY THE CORROSION CHARACTERISTICS.
C.- THE ENVIRONMENT DOES NOT AFFECT THE CORROSION CHARACTERISTICS.
D.- THE SALT WATER AND NOT THE ENVIRONMENT AFFECTS GREATLY THE CORROSION CHARACTERISTICS.

A.- BOTH ACT AS GASES AND ALSO ACT AS LIQUID.
B.- BOTH ACT AS LIQUIDS AND ACT IN A VERY DISSIMILAR WAY.
C.- BOTH ACT AS FLUIDS AND ACT IN A VERY DIFFERENT WAY.
D.- BOTH ACT AS FLUIDS AND ACT IN A VERY SIMILAR WAY.
 A.- IS CALLED THE MAIN GEAR.
 B.- IS CALLED THE DRIVE GEAR.
 C.- IS CALLED THE DRIVEN GEAR.
 D.- IS CALLED THE FIRST CLASS GEAR.

 A.- ACTS IN THE SAME DIRECTION.
 B.- ACTS IN THE OPPOSITE DIRECTION.
 C.- ACTS INDIVIDUALLY.
 D.- THE FORCES DO NOT AFFECT THE FUSELAGE.

 A.- THEY ACT BREAKING THE PIECES THAN DO NOT HAVE RIGHT TORQUE.
 B.- THEY ACT IN A HORIZONTAL MANNER.
 C.- THEY ACT IN COMBINATION RATHER THAN SINGLY.
 D.- THEY ACT SINGLY RATHER THAN IN COMBINATION.

 A.- EVERY FIVE INCHES OF MATERIAL.
 B.- EVERY SQUARE METER OF MATERIAL.
 C.- EVERY SQUARE FOOT OF MATERIAL.
 D.- EVERY SQUARE INCH OF MATERIAL.

 A.- DEPENDS ON THE SCALE RANGE.
 B.- ONLY WITH EMPTY TANKS AND LINES.
 C.- ONLY WITH FULL FUEL IN THE TANKS AND LINES.
 D.- ONLY WITH RESIDUAL FUEL IN THE TANKS AND LINES.
A. - POWER.
B. - PRESSURE
C. - FORCE.
D. - QUANTITY.

A. - MOVEMENT.
B. - YAW.
C. - PITCH.
D. - ROLL.

A. - MONOCOQUE.
B. - REINFORCED.
C. - STANDARD.
D. - CONVENTIONAL.

A. - THE ATOM.
B. - THE MOLECULE.
C. - THE ELECTRON.
D. - THE PROTON.

A. - BY ITS COLOR.
B. - BY A PART NUMBER.
C. - BY ITS FORM.
D. - BY ITS HEAD.
291.- HOW IS CALLED THE TENDENCY OF AN OBJECT TO REMAIN STATIONARY WHEN SUPPORTED FROM ITS OWN CENTER OF GRAVITY? REF.: AC 65-15A, PAGE 82.
A.- DYNAMIC BALANCE.
B.- STATIC BALANCE.
C.- TRIM TABS BALANCE.
D.- BALANCED CONDITION.

A.- IS A CONTINUED CHANGE OF POSITION OR PLACE.
B.- IS CONTINUED CHANGE OF MASS AND DIAMETER.
C.- IS AN ALTERATION IN POSITION OR PLACE.
D.- IS SPEED OR VELOCITY.

293.- HOW IS POSSIBLE TO OBTAIN A MOMENT IN WEIGHT AND BALANCE? REF.: FAA-H-8083-30, PAGE 4-3.
A.- DIVIDING THE WEIGHT BY ITS DISTANCE.
B.- MULTIPLYING THE WEIGHT BY ITS DISTANCE.
C.- WEIGHING ALL THE ITEMS.
D.- WEIGHING THE ENTIRE AIRPLANE.

A.- ENERGY THAT IS POWERFUL.
B.- ENERGY THAT HAS HIGH POWER.
C.- ENERGY THAT IS IN MOTION OR ENERGY THAT IS READY TO BE USED.
D.- ENERGY THAT IS AT REST OR ENERGY THAT IS STORED.

A.- IS LOCATED LIKE A DIFFUSER.
B.- IS LOCATED PERPENDICULARLY.
C.- IS LOCATED PARALLEL.
D.- IS LOCATED CENTRALLY.
A.- IT IS EXACTLY THE SAME.
B.- IT IS BASICALLY THE SAME.
C.- IT COULD BE THE SAME.
D.- BOTH PROCEDURE ARE ABSOLUTELY DIFFERENT.

A.- LIKE AN AIRCRAFT FLAP, WITH SCREWS AND DEFLECTORS.
B.- LIKE AN AIRCRAFT WING, WITH RIBS AND SPARS.
C.- LIKE AN AIRCRAFT FUSELAGE, WITH LONGERONS AND RIBS.
D.- IT IS BUILT LIKE A LANDING GEAR.

A.- THE VELOCITY INCREASES.
B.- THE VELOCITY DECREASES.
C.- THE PRESSURE INCREASES.
D.- THE PRESSURE AFFECTS THE SPEED.

A.- DEPEND ON THE PILOT SKILL.
B.- HORIZONTAL, THIS IS VERTICAL TO THE GROUND.
C.- VERTICAL, THIS IS PARALLEL TO THE GROUND.
D.- HORIZONTAL, THIS IS PARALLEL TO THE GROUND.

A.- DEPEND ON THE PILOT SKILL.
B.- HORIZONTAL, THIS IS VERTICAL TO THE GROUND.
C.- VERTICAL, THIS IS PARALLEL TO THE GROUND.
D.- HORIZONTAL, THIS IS PARALLEL TO THE GROUND.